Learning Image Statistics for Bayesian Tracking

نویسندگان

  • Hedvig Kjellström
  • Michael J. Black
چکیده

This paper describes a framework for learning probabilistic models of objects and scenes and for exploiting these models for tracking complex, deformable, or articulated objects in image sequences. We focus on the probabilistic tracking of people and learn models of how they appear and move in images. In particular, we learn the likelihood of observing various spatial and temporal filter responses corresponding to edges, ridges, and motion differences given a model of the person. Similarly, we learn probability distributions over filter responses for general scenes that define a likelihood of observing the filter responses for arbitrary backgrounds. We then derive a probabilistic model for tracking that exploits the ratio between the likelihood that image pixels corresponding to the foreground (person) were generated by an actual person or by some unknown background. The paper extends previous work on learning image statistics and combines it with Bayesian tracking using particle filtering. By combining multiple image cues, and by using learned likelihood models, we demonstrate improved robustness and accuracy when tracking complex objects such as people in monocular image sequences with cluttered scenes and a moving camera.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the Statistics of People in Images and Video

This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people’s appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person pr...

متن کامل

Tracking multiple moving objects in images using Markov Chain Monte Carlo

A new Bayesian state and parameter learning algorithm for multiple target tracking (MTT) models with image observations is proposed. Specifically, a Markov chain Monte Carlo algorithm is designed to sample from the posterior distribution of the unknown number of targets, their birth and death times, states and model parameters, which constitutes the complete solution to the tracking problem. Th...

متن کامل

On-line Support Vector Regression of the transition model for the Kalman filter

Recursive Bayesian Estimation (RBE) is a widespread solution for visual tracking as well as for applications in other domains where a hidden state is estimated recursively from noisy measurements. From a practical point of view, deployment of RBE filters is limited by the assumption of complete knowledge on the process and measurement statistics. These missing tokens of information lead to an a...

متن کامل

Image Statistics and Local Spatial Conditions for Nonstationary Blurred Image Reconstruction

Deblurring is important in many visual systems. This paper presents a novel approach for nonstationary blurred image reconstruction with ringing reduction in a variational Bayesian learning and regularization framework. Our approach makes effective use of the image statistical prior and image local spatial conditions through the whole learning scheme. A nature image statistics based marginal pr...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001